
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2020

1 Instructor: Daniel Llamocca
TAs: David Stern, Nathan Kelley

Laboratory 6
(Due date: 002: April 15th, 003: April 16th)

OBJECTIVES
✓ Design a 16-bit microprocessor with Single-Cycle Hardwired Control.
✓ Implement an Instruction Set.

VHDL CODING

✓ Refer to the Tutorial: VHDL for FPGAs for a tutorial and a list of examples.

FIRST ACTIVITY: 16-BIT MICROPROCESSOR DESIGN AND SIMULATION (100/100)
▪ Implement the Simple Computer (see Notes – Unit 6): uP with 6-bit IM/DM address, 16-bit instructions, and 16-bit data.

▪ Components:

✓ DM, IM: 64 words, 16 bits per word. Use the files RAM_emul.vhd, my_rege.vhd. (set the proper parameters).

✓ Datapath: (note that CI[2..0] = IR[2..0], CI[15..3]=”00…0”)

 Register File: 8 registers (R0 – R7) are included. See Notes – Unit 6 for an example with 4 registers.

 ALU: Use the files: alu.vhd, alu_arith.vhd, alu_logic.vhd, super_addsub.vhd, fulladd.vhd.

✓ PC: Note that OFFSET is a 6-bit signed number. The adder uses 7 bits, from which we only retrieve the 6 LBSs.

✓ Instruction Decoder (ID): This is a large combinational circuit. The outputs depend directly on the inputs.

 The outputs are generated based on the instructions on IR (Instruction Register).

 Instruction Set: For the list of instructions, refer to Notes – Unit 6. The Instruction Set does not include instructions
that read the V and C bits. Thus, the ID does not consider these two bits.

 stop_ID: This input signal causes all the ID outputs to be ‘0’ if stop_ID=1.

 isbranch: If the instruction in IR is a branch or jump instruction, this signal is set to ‘1’.

✓ Instruction Load Control: This component is required in order to write instructions on the IM, and then to trigger program

execution. Use the file instload_ctrl.vhd (use parameters H=6, N=16) This circuit is a FSM that works as follows:

 To store instructions on IM from an external port, assert L_ex and then use the inputs D_ex and we_ex.

 To store instructions on IM using pre-stored hardwired data, assert L_in.

 Once instructions are written on the IM, program execution is started by asserting start for a clock cycle. The step

signal controls whether to enable program execution (step=1) or disable it (step=0).

DATAPATH

PC

Instruction

Memory

Instruction

Decoder

Z

N

FS

FS

AD

JA

OFFSETE

sclr

H=6

16

Data

Memory

MW

DI

AD

DO

Z

V

N

C

16

6

DM_DI

WE

16

CONTROL UNIT

ALU

Register

File

23 registers

IR

WE

PC

DATAPATH

OS

JS

3

IR[2..0]

4

IM_WE

E_PC

16

stop_ID

INST_LOAD

CONTROL

I
M
_
D
I

sclr_PC

isbranch

16

L_in

L_ex

D_ex

we_ex

start

step

DM_DO

IR[8..6]&IR[2..0]

DM_AD

RW DR SA SB MB

3 3 3

MD

D
R

S
A

S
B

M
B

M
D

R
W

M
W

O
S

J
S

DM_AD = AO[5..0]6

DO

DI

AO

AO

CI

6

AO: 16-bits wide.

Only the 6 LSBs are used

DO

DI

PC

H=6

http://www.secs.oakland.edu/~llamocca/VHDLforFPGAs.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710: Computer Hardware Design Winter 2020

2 Instructor: Daniel Llamocca
TAs: David Stern, Nathan Kelley

SIMULATION
▪ We will execute the following pre-stored program (storing numbers from 43 down to 29 in Data Memory on addresses 0 to

14): (see instload_ctrl.vhd). Note that the number to be stored appears in R6.

Address Assembly Program VHDL code snippet

000000 start: LDI R2,5 CD(0) <= “1001100010---101”
000001 LDI R6,7 CD(1) <= “1001100110---111”

000010 ADI R6,R6, 7 CD(2) <= “1000010110110111”

000011 MOVA R4,R6 CD(3) <= “0000000100110---"

000100 ADD R6,R4,R6 CD(4) <= “0000010110100110”

000101 loop: INC R6,R6 CD(5) <= “0000001110110---"

000110 ST R4,R6 CD(6) <= “0100000---100110”

000111 BRZ R4, -7 CD(7) <= “1100000111100001”

001000 DEC R4,R4 CD(8) <= “0000110100100---"

001001 JMP R2 CD(9) <= “1110000---010---"

001010 …

...

▪ Tesbench:

✓ Set L_in=1 for a clock cycle. Then wait 70 cycles for the program to be written on the Instruction Memory.

✓ Set start=1 for a clock cycle. Make sure that step = 1 during the execution of the program.

 Verification: To see if the instructions are processed in the right order, take a look at PC and IR. Then, observe the

R0-R7 values as well as other signals such as the ID outputs. To verify that the right data was stored on DM (Data

Memory), you can add the Individual Registers (from 0 to 14) of DM to the waveform.

▪ Design Flow and verification:

✓ Write the VHDL for the given circuit. Synthesize your circuit. (Run Synthesis).

✓ Perform Functional Simulation (Run Simulation → Run Behavioral Simulation). Demonstrate this to your TA.

▪ Submit (as a .zip file) the generated files: VHDL code and VHDL testbench to Moodle (an assignment will be created). DO

NOT submit the whole Vivado Project.

 You can work in teams of up to two (2) students. Only one Moodle submission per team.

TA signature: _____________________________ Date: __________________________

E_PC

sclr_PC

1 0

+

0000001

E

sclr

6

7

OFFSET

1 0

6
JA

6

PC

0&PC

7

6

OS

JS

PROGRAM COUNTER (PC)

Register

File

2M registers

ALU

0 1 MB

16

16
CI

DOAO

D

0 1 MD

16
DI

Z

V

N

C

FS

RW SA

SBDR

3

33

16

16

BUS_A BUS_B

DATAPATH

OFFSET(5)&OFFSET

7

